
Universal Quantification in a Constraint-Based Planner

Keith Golden and Jeremy Frank *
NASA Ames Research Center

Mail Stop 269-1
Moffett Field, CA 94035

{kgolden, frank}_pt vlemy, arc. nasa. gov

Abstract

Constraints and universal quantification axe both use-
ful in planning, but handling universally quantified
constraints presents some noveI challenges. We present
a general approach to proving the validity of univer-
sally quantified constraints. The approach essentially
consists of checking that the constraint is not violated
for all members of the universe. We show that this ap-
proach can sometimes be applied even when variable
domains are infinite, and we present some useful spe-
cial cases where this can be done efficiently.

1 Introduction

Soffbots (software robots) are intelligent software

agents that sense and act in an environment, such as
a computer operating system. Since software environ-
ments are so rich, there is no limit to the kinds of tasks
that softb0ts can perform, including on-line compar-

ison shopping, managing email, scheduling meetings,
and processing data. Planner-based softbots(EW94;
?) accept goals from users and invoke a planner to
find a sequence of actions (e.g., commands or program

invocations) that will achieve the goal.
- %_-kre-working-o-n-_-_[bots-fSrd£[a processing, in-

cluding image processing, managing file archives, and
running scientific models. Due to the richness of soft-

bot problem domains in general, and data processing
domains in particular, the planner needs to be able to
handle a rich action representation. In particular, it

must support

• universal quantification: Many commands and

programs operate on sets of things, where member-
ship in the set can be defined in terms of necessary
and sufficient conditions. For example,

- The Unix Is (or DOS dir) command lists all files

in a given directory

- The "tar x" (or unzip) command extracts all files

in a given archive.

"W_ewould liketothank Tania Bedrax-Weisss,AriJ6ns-

son,\VanlinPan and Robert Morrisfortheircontributions
to this work.
Copyright (_) 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

- The grep command returns all lines of text in a
file matching a given regular expression.

- Most image processing commands operate on all

pixels in an image or in a given region of an image.

• incomplete information: It is common for soft-
bots to have only incomplete information about their
environment. For example, a softbot is unlikely to
know about all the files on the local filesystem, much

less all the files available over the Internet.

• large or infinite universes: The size of the uni-
verse is generally very large or infinite. For example,
there are hundreds of thousands of files accessible on

a typical filesystem and billions of web pages publicly
available over the internet. The number of possible

files, file pathnames, etc., is effectively infinite. Given
the presence of incomplete information and the abil-
ity to create new files, it is necessary to reason about
these infinite sets.

• constraints: As noted in (CFL+97; ?), data process-

ing domains typically involve a rich set of constraints.
By constraints, we mean non-fluent conditions, such
as numeric relations, whose truth values can be com-

puted.

The intersection of these features poses some interesting

challenges. For example, the intersection of universal
quantification and incomplete information means that
standard approaches to dealing with universal quantifi-
cation in planning (PW92) don't work, and other ap-

proaches are needed (Go198; ?; ?). This paper discusses
the effect of universal quantification and large/infinite

universes on constraint reasoning and proposes a way
to accommodate universally quantified constraints into

a constraint-based planner.

1.1 Universally quantified constraints

Given a representation that allows both universal quan-
tification and constraints, it is not surprising that we

encounter universally quantified constraints. In fact,
such constraints can be exceedingly useful. For exam-

ple, to represent an image-processing command that
performs a horizontal flip of the pixels in a rectangular
region of an image between (MINX, MINY) and (MAXX,

MAXY), we might write something like:

Vx,y when(MINX_< x <MAXX ,_,_ MINY_<
y _MAYX)

output.va_ue[x, _/ .'= _nput.va_u¢ [MA2_X-_ lvhNx-
z,y)

where output.value(x, y) is the pixel value of the image
output at coordinates x, y, and similarly for input.value.
We might also want to specify spatial transforms of an
image, such as scaling or affine transforms, or changes
to color values. All of these are convenient to represent
using numeric constraints, quantified over the pixels in
the image or the specified region.

In describing commands that act on text files, it is
useful to quantify over lines or characters of text. For
example, the grep command outputs all lines of text
contained in the input that match a given regular ex-
pression:

Wine when containsLine(input, line) &&
matches(input, regexp)

containsLine(output, line)

Similarly, many commands operate on sets of files,

which can often be expressed in terms of a regular ex-
pression satisfied by their pathnames. For example, the
files recursively contained in directory "/foo/bar" all
have the pathname "/foo/bar/.+", where ".+" means
"any string at least one character long."

In both of these examples, we see that it is necessary
to reason about constraints on variables with either in-

finite or very large domains.

1.2 Roadmap

In the remainder of the paper, we discuss how univer-

sally quantified constraints arise in the planning pro-
cess and how they are solved. Section 2 discusses how

universally quantified constraints arise as subgoals in
the planning process. Section 3 presents a general ap-
proach to solving universally quantified constraints in

a constraint network. Section 4 presents an algorithm
for implementing this approach and proves that the al-

gorithm is both sound and complete. The general ap-
proach is not always possible to instantiate when there
are infinite domains. Section 5 provides an instantia-
tion of this general approach to efficiently handle con-
straints with infinite domains under certain restrictions.

Section 6 presents an example covering both planning
and constraint reasoning. Section 7 discusses related
work.

2 Planning with universal

quantification

The traditional approach to planning with universal
quantification, used by ucPoP (PW92) and other plan-
ners works as follows:

I. Universally quantified goals are replaced with the the

equivalent universally ground conjunctive goal, which
is called the universal base.

2. Universally quantified effects are peeled as needed.
That is, given an effect

'v'x when(P(x)) Q(x)

and a goal, Q(a), a new ground effect is "peeled off'
the forall effect to satisfy the goal:

when((P(a)) Q(a)

The result is the subgoal P(a).

Replacing goals with their universal base depends on
the Closed World Assumption (all objects must be
known) and on the number of objects in the universe
being relatively small. In softbot domains, neither as-
sumption is likely to be valid. For example, not all files
accessible to the softbot will be known, and the num-
ber of available files can easily be thousands or millions.
To address the problem that not all files are known, the
softbot can first achieve a subgoal of knowing all the rel-

evant files, and then proceed as above (EGW97), but
that still leaves the problem that the number of files
may be large. For example, suppose the softbot has
the goal of ensuring that all of the files in the user's

home directory are group readable. This goal could be
achieved by identifying all the files (recursively) con-
rained in the home directory "-user" and then ensuring
that each one is group readable, but it it would take
some time just to identify all the files. It is much sim-
pler and faster to handle them all at once _dth a single
Unix command:

chmod -R g+r -user

Such an approach is supported in the PUCCINI planner
(Go198) by directly linking from universally quantified
goals to universally quantified effects.

2.1 Goal regression with quantified
variables

The subgoaling, or goal regression, procedure we use
is similar to that used by PUCCINI. We use the peel-
ing technique outlined above, with the addition that
quantified variables in the effect can be replaced by
quantified variables in the goal. Sppose we have a goal
when(_g)k_ 9 that we want to satisfy using an effect
when (_e)_e- If the right-hand side (R/IS) of a goal
q29 contains multiple conjuncts, they are solved inde-
pendently, so subgoals are all of the form when(_g)¢g,
where Cg is a single literal. We rely on a unification
function MGU(¢e, Cg), which returns the most general
unifier between the effect literal ¢_ and the goal lit-
eral Cg. If the literals don't unify, MGU returns _i.
Otherwise, it returns a set of pairs {(ve, vg)), whose
interpretation is that ¢_ unifies with Cg if all the con-
straints v_ = vg are satisfied To determine the condi-
tions required for {when(q_e)q2e} to satisfy thegoal,

Cg is matched against each of the literals Ce, using the
following procedure.

1. regress({when(_e)_)e}, {when(_g)¢g})

2. let '3 =MGU(¢e, Cg)

3.

3.

4.

5.

6.

7.

8.

9.

I0.

ii.

let C = {}

let _n := copy(_e)

if _- I _=- return fai!'lre

for each @e, vg)E
if Ve is _/then replace Ve in _n with v9.

else if v9 is _, then return failure.

Vm, s:person when(m =parent(s) _z_: sex(m)
=female. Sz_ sex(s) = male _:_: age(s) = 0)

{(m --parent(s) && sex(m) = female && age(s)

< 1}
Note that the left hand side Of this expression is just

the left hand side of the original goal, and the right
else C := C A (re = vg). hand side is the "peeled" left hand side of the effect.

end for . .All suh_oals from conditional effects are generated the
replace all unmatched V variables in @_ w!t%a_lre_v_y,Veg_Z_e_,ne LHS expression is carried back

return {when(@g)@,_}AC through successive goal regressions.

where the new 3 variables are inside the scope of all

V variables from the goal. This subgoaling procedure
alone is not sufficient for the planner to be complete,

because it provides no way to determine that two or
more effects combine to achieve a universally quanti-

fied goal. An additional technique, called goal parti-
tioning, implemented in the PucczNI planner (GODS;
?), provides this ability, but at a high computational
cost. We are investigating a way to lower this cost, but
that is outside the scope of this paper.

For example, suppose that we have an action to give

a Mothers' Day card to all new mothers:

Vpl,p2:person when(p1 =parent(p2) && sex(p1)
= female &£: age(p2) < 1)

has-card(p1)

and our goal is to give a card to Mary (i.e., has-

card(Mary)). Applying this action to satisfy the goal
will result in the subgoal

3p :person(Mary= parent(pl)" se /yary) =
......... f6-_-a]_-_-_h')- < 1)--

That is, the action will achieve the goal if Mary is fe-
male and has a child less than one year old. Note that

although p2 is universally quantified, p_ is existentially
quantified. It is not necessary for Mary to be the parent
of all children under one year of age; any one child will
siiffice: Thq§ is true in general; any unmatdhed iifli,]_r-

sally quantfied variable v in the effect is replaced with
an existentially quantified variable v' in the subgoal.
The reason is that since the effect occurs for all v that

satisfy _, and v doesn't matter (isn't mentioned in the
goal), it is only necessary to find some v that satis-
fies • . Note that if it the effect were of the form "give

a card to everyone who is tim mother of all children,"
then it would indeed be necessary for p_ to be univer-

sally quantified in the subgoal. However, as we discuss
below, quantifiers can't be nested within antecedents
and existentials are not allowed in effects, so effects of

that form are impossible to state.
Now suppose our goal is to give a card to all mothers

of newborn boys:

Vm, s:person when(m =parent(s) _z& sex(m) =
female && sex(s) = male £:& age(s) = 0) has-

card(m))

If we use the action to give a card to all new mothers,

the subgoal then becomes

The RHS literals m =parent(s) and sex(m) = female

are clearly entailed by the LHS, which we can determine
by unification, using a slight variation on the regression
procedure above. When the LHS entails a literal on the
I_HS, we say that the goal literal is trivially satisfied,
and remove it without further subgoaling.

The remaining goal condition, a constraint, is not so
straightforward. Although age(s) = 0 clearly entails

age(s) < 1, the two do not unify. As we discuss below,
the purpose of universally quantified constraints is to
answer the entailment question for constraints.

2.2 Restrictions on universally quantified

expressions

Given the requirement to support universally quanti-
fied goals directly with universally quantified effects,
it is important to specify exactly what kinds of expres-
sions the language will allow, since the unrestricted case
would require first-order theorem proving, which is un-
decidable.

2-.2,0,0_t Effects All universally quantified effects

are conditional effects, in which the antecedent speci-
fies restrictions on the universe(s) of the quantified vari-

able(s) and the consequent specifies what will become
true for members of the specified universes. These ef-
fects are of the form

where • and • are conjunctive expressions and vari-
ables in _ are action parameters, variables in action
schemas that need to be instantiated in order to obtain
concrete actions. Limiting _5 to a conjunction is not a
real limitation, since an expression of the form

when (_1 V ¢52)

can be rewritten as the conjunction of "when(_S]) _"

and "when(ffP2) _."
Effects cannot contain existential quantifiers, 1 or

anything equivalent to existentials, such as universal
quantifiers nested within an antecedent or negation. Al-
lowing existentials or disjunctive consequents in effects
would make them nondeterministic. Given the lack of

nesting and existentials, all universals can be treated as
free variables. All quantified variables appearing in

1Effects can introduce the creation of new objects,
through the new keyword, which is similar in some respects
to an existential quantifier, but that is irrelevant to the topic

of this paper.

mustalsoappearin _. Thisisjustasanitycheck,since
thedomainofanyquantifiedvariablethatdoesnotap-
pearin @is completelyunrestricted.@maycontain
additionalquantifiedvariables,;7,thatdon'tappearin
_P.Forexample,in theMothers'Dayeffectpresented
above,thevariableP2appearsonlyin _5.
2.2.0.0.2 Goals and preconditions The syntax
of universally quantified goals and action preconditions
is the same as that of effects, except that existential
quantifiers nested within the universal quantifiers are
allowed in _:

VS, y-'3F (when(_(_, _, z_)) k_(i, F, v_)).

As with effects, the use of the keyword when indicates

that _5(f, _7,v7) and _(f, F, _) refer to different times.
That is, for all all _ that satisfy _5(_, F, vT) when the goal
is given (i.e., in the initial state), we want k_(_, Z, vT) to
be true (for some z-) when the goal is achieved (i.e., in
the final state). Thus, we can specify goals like "paint
all the blue chairs green" without contradiction:

Vc: chair when (color(c) = blue) color(c) = green

Goals can also explicitly refer to time. For example, we
can ask for data on last Tuesday's rainfall. Whereas
effects are not really restricted compared to the com-
monly supported subset of ADL (Ped89), the limita-
tions on universally quantified goals are more restric-
tive. This particular set of restrictions was chosen to
support the class of goals required for the softbot do-

mains that we are interested in, while simplifying the
_ infe_re_nce procedures.

2.2.0.0.3 Subgoals Subgoals are just goals, and
obey the same restrictions. However, since subgoals are
generated through a specific process, outlined above, it
is worth showing that the process maintains the restric-
tion on goals.

• Since the subgoaling process always copies the left-
hand side (LHS) of the goal to the LHS of the subgoal,
all restrictions obeyed by the former are obeyed by
the latter. In particular, the LHS is conjunctive and
it can contain no existentials.

• The RHS of the subgoal comes from the (peeled) LHS
of the effect. Since the latter is conjunctive, so is the
former.

• Quantified variables appearing in the R.HS but not
in the LHS are existential. To see why, consider that
every quantified variable that appears in the RHS
either originated in the goal or is a copy of a variable
from the effect.

1. If the variable appeared in the goal, then it cannot
have been in the LHS of goal, since otherwise it
would be in the LHS of the subgoal, contradicting
our assumption. Since it was not in the LHS of the
goal, it must be an existential.

2. If the variable came from the effect, then it must
be an existential, since, as indicated in line 10 of

the regression algorithm, all universals in the effect

that aren't replaced by variables from the goal are
replaced by existentials.

2.3 From planning to constraints

In the remainder of the paper, we discuss how to tell

if the LHS of a universally quantified subgoal entails
the RHS when both sides contain constraints. We will
not concern ourselves further with the details of the

planning algorithm. We can convert the whole plan-
ning problem into a constraint problem, but it would
also be possible to use a POCL planner like PUCCINZ

(Go198), and perform constraint reasoning to answer
questions about whether certain subgoals are trivially
satisfied (the LHS entails the RHS). In either case, we
can separate the problem of solving forall constraints
from the rest of the planning problem.

We assume that the planner produces candidate plans
that are complete except for the instantiation of some
action parameters and are correct subject to a list of

subgoals being '%rivially" satisfied (i.e. no more actions
need to be inserted into the plan. The planner sends

the constraint reasoner this list of subgoals, which are
of the form

W, y_ (_(_, _, _) _ ',Z,(_, Z, _))

along with some additional constraints on the parame-
ters. The job of the constraint network is to either re-
turn an assignment to all of the unspecified parameters
(_T) such that all of the subgoals are trivially satisfied,

or return failure in case there is no such assignment.
If the constraint network returns failure then the can-

didate plan is]nvM_d, so thd-_la?ifigi _ _h-0-filkl-g6n_e
searching. Otherwise, the candidate plan, instantiated
with the values for _ returned by the constraint net-
work, is a valid plan.

3 Solving Quantified Constraints

Before describing the approach further, we introduce
some notation. Let X be a set of variables. Denote

the domain of x E X as d(x). Let D be the set of do-
mains. Let k = (xl...xi;R) be a constraint; x_ E X and
R C d(xl) x ...d(xi) is a relation defining the permitted
assignments to the variables. Let K be the set of con-
straints. Then C(X) = (X, D, K) is a CSP. A solution
to the CSP is an assignment of values to the variables
such that all constraints are satisfied. Let S(C) be the
set of solutions to C. Let L be a relation on a set of vari-

ables U, and let 7rv(L) be the projection of the relation
L onto the set V _C U . A CSP is k-consistent ff any
consistent assignment to k-1 variables can be extended
to an assingment to k variables (k=2 is arc consistency.)
A CSP is strongly k-consistent if it is k-consistent for

all k. Let _(_), gJ(b) be CSPs. We then refer to a

constraint of the form V_, y-_F(_(ff, _, v_) =_ _P(ff, Z, _))
as a quantified constraint, and refer to the constraints

comprising _(_), _(b) as primitive constraints.

The general approach to solving quantified implica-
tions is straightforward. Given an expression of the

form"allthingsthat satisfy42alsosatisfy_," weiden-
tify thesetofthingsthat satisfy42andcheckwhether
theyalsosatisfy¢2.Wecanthink of this asanem-
piricalprooftechnique:we'redoingnothingmorethan
checkingthevalidityof theexpressionforall members
of theuniverse.

Moreformally,givenaquantifiedconstraint

Vl, _-3_(42(_,/7,_) _ _(2,_,_)),

Thevariablesin_ mustbeassignedvaluesbyasearch
procedure.Asmentionedin Section2,thesevariables
representtheparametersof actions;the searchover
thesevalues,in essence,is the searchovercandidate
plans. Duringthis search,wecanpropagatethedo-
mainsofthevariablesin_,/7,v_ based on 42, but do not

assign these variables. We do not propagate based on
the constraints in _, because these constraints do not
hold unless the universe of discourse defined by 42 is not

empty. Once all of these variables are assigned, we are
left with the constraint

4 Algorithm

We present an algorithm for proving that universally

quantified constraints are valid. The only assumptions
are that there is a way of enumerating the variables

in _, and that there is some way of representing the
values satisfying 42(_, y-_ and k_(_,/7)- In the following
sections, we discuss specific techniques for performing

these operations.

I. choose assignments for all normal variables _.

2. for each quantified constraint V_, if,3Z.42(_,/7)

(,z_

4. for(each assignment _E

6. return failure.
7. end for
8. end for

9. return success.

w,

where _ represents one or more universally quantified
variables common to 42 and _. Again, as described

above, the desired semantics of this implication is that

everything satisfying 42 also satisfies _. Thus, we must
identify the set of tuples corresponding to the assign-
ments to _ that satisfy 42(i,/7), and check that each

tuple also satisfies k_(_, _. To do this, we solve both
42(_,y-') and _(5, _ for _. We then check to see if

1r(_}S(42(_, y-')) C r(_}S(_2(_, 5')) . Because the quanti-
fied constraint _akes the form of an implication, if [he

set of solutions to 42 is empty, then the implication is
satisfied vacuously, and there are no constraints on the
values of the variables in i. If there are solutions to 42

but _,(_}S(42(i, _) _ _(5}S(_(x, z_), then the quanti-
fied constraint is not satisfied, and some other assign-
ment to the variables in _ must be generated. Other-

wise, the constraint is satisfied, and the domains of
are defined by the the restrictions imposed by _.

If the set of tuples satisfying 42 is finite, then enumer-

ating them and checking that each one of them satisfies
is relatively straightforward, though possibly time

consuming. But what if the set is infinite? In the gen-
eral case, there is nothing that can be done. However,
as we will see, there are some useful classes of problems
where it is possible to identify the infinite set of tuples

satisfying 42(i, _) and check that they all satisfy _(_,
using efficient constraint propagation techniques.

It should be noted that the steps presented above
can be done in a variety of ways. There is no need to

assign all variables in _ before beginning the process
of identifying the domain of _. It is also possible to fix
the domains of _ after solving 42 before solving • and

only check fo see if any elements of these domains are
eliminated during the solving of _. These refinements
are left as future work.

Theorem: The algorithm for proving quantified con-
straints is sound: it will not return success if,

for any quantified constraint, V_, _, _._(z, _, u_)
q2(ff, F, _), there is some assignment d to _ such that
/7, W.42(, _, _) A _(d, _, _).

Proof." Suppose otherwise. There is some some d

such that _7, V_.42(cY, _7,_)A-_(d, F, _). The algorithm
will only return success if each each w_ E u_ is singleton,
and line 6 is not reached. This happens if

I. There are no quantified constraints (line 2). This
contradicts the assumption that there is such a con-
straint.

2. S(42(Y,/7, z_) = _ (line 3). This is equbralent to saying
42 is false for all if, contradicting our assumption that
there was some d for which 42 was true.

S(42(i,/7,_) _ 0 and there is no d such that 5

r{}S(_(_,/7, _)) and _ ¢ ={_}S(ff2(_ ", Y, w)) (lines4,

5). That is, there is no d such that 3_.42(d, _7,w) and
VZ.(-_(d, 5",z_)), contradicting the assumption that

w.42(5,/7, f

.

Theorem: The algorithm for proving quantified con-
straints is complete: If, for all quantified constraints,

V_,/7, _5".42(x,/7, u_) =_ _(z', _Y,z_), then the algorithm re-
turns success.

Proof." Suppose the algorithm returns failure, but
for all quantified constraints, V_',/7, 35".42(x, _7,uU) =_
k_(_,F,z_). The algorithm will return failure
if there is some quantified constraint for which

S(+(_,/7,_Z)) # 0 and d _ _{_}S(42(_,/7,_))

but d _' r(_}S(¢(:_,F,_)) (line 5). But then

c which in turn

violates the assumption that for Ml quantified con-
straints, V_, _7,_Z._(z, _, _) _ _(_, Z, _).

5 Handling infinite universes

The general approach discussed above works well for

relatively small, finite domains. To handle large or infi-
nite domains efficiently, we need to employ special-case
constraint propagation techniques. We describe one
such technique in detail in this section. The technique
depends on being able to represent infinite domains con-
cisely. In sections 5.1 and 5.2, we discuss concise repre-
sentations of infinite domains for numbers and strings,
and discuss classes of constraints for which these con-

cise representations can store the valid domains exactly.
In section 5.3, we discuss a way to use these domains
to store the solutions of • and _.

(a)

t _: _1

(b)

5.1 Numeric domains

Large or infinite sets of numbers can be represented
concisely using intervals. Additionally, we can deter-

mine whether two intervals are equivalent efficiently.
We will assume that all infinite numeric domains are

represented as single intervals. Thus, the question of
whether the domain of a numeric variable can. repre-

sent exactly the possible values allowed by a constraint
reduces to the question of whether the values for that

variable allowed by the constraint can be represented
as an interval. Assuming that the domains of the other
variables in the constraint are also represented as inter-
vals, the question then becomes whether the projection
of an interval on one variable is an interval on another.

We will consider both continuous (real) and discrete
(integer) domains.

.......................
........./.............................:......

/i /1 1

I

I I

x dom
i<:: 2_1

P

(a)

, x dom J
......... _'_I

t

(b)

5.1.0.0.4 Continuous If the domain ofx is contin-

uous, then for every continuous function y = f(x), if the
domain of x is an interval, the domain of y will also be

an interval. The converse is not necessarily true. How-
ever, the converse is true if f is either non-decreasing (a)
or non-increasing (b). If f(x) increases and decreases in
x, then there will be some y interval that corresponds
to multiple z intervals (c). However, if the y interval
obeys certain restrictions, then the domain of z will still
be an interval. In particular,

• neither of the horizontal lines representing the
bounds of the y interval may cross f more than twice.

Crossing twice corresponds to passing through one
peak or trough in f.

• if one of the lines passes through a peak, the other

linemustbeabovethepeak(d),andif onelinepasses
throughatrough,thentheotherlinemustbebelow
thetrough.

Wecanapplythesamesortof reasoningto relations
(e).Howeveraspecialclassofrelationsisworthnoting.
If anyrelationdefinesa convexregion(d), suchthat
therelationis trueforall pointsinsidetheregionand
falseforallpointsoutsideit, thentheprojectionofany
intervalon y will be an interval on x (or vice versa).

Examples of convex regions are,

• x<10

• y>2x+l

• z2Z_y2 <_ r2

I I

I I

t I

, x dom ,
i_ >m :>

(a)

" '_ i
I

r I I r

l F l

I t I

T I I I

(b)

5.1.0.0.5 Continuous to discrete A function

from a continuous (real) variable to a discrete (inte-

ger) variable is by definition not a continuous function.
However, it may be regarded as a continuous function

whose range is projected onto the integer number line.
If such a description is valid, then the projection of
any continuous interval on x will be a discrete inter-
val on y. Going the other direction, intervals on y will

map to intervals on x under the same circumstances as
in the fully continuous case: non-decreasing functions,

non-increasing functions,and relationsdefining convex

regions.

5.1.0.0.6 Discrete A function whose domain is

discretewillnot,ingeneral,projectan intervalonto an-

other intervM. For example, considerthe simple caseof

y = 2x, where x and y are integers.The domain ofy is
the setofeven numbers, which cannot be representedas

an interval.However, when we considerrelationsdefin-

ing convex regions,we again findthat the projectionof
an intervalisan interval.So although y --2x does not

give an interval,y _<2x does.

5.1.0.0.7 Other domain representations The

decision to represent a numeric domain using a sin-

gle intervalhas had a profound impact on the class
of constraintsthat we can "solve"for particularvari-

ables. Another representation,such as a finiteset of

intervMs,would allow additionalconstraintsto be han-

dled,though atthe cost ofsome additionalcomplexity
in constraint execution.

5.2 String domains

Just as infinite sets ofnumbers can be represented by in-

tervals, infinite sets of strings can be represented by reg-
ular expressions. Regular expressions are a much more
flexible representation than intervals, in that the set of

regular expressions is closed under intersection, union
and negation, whereas the set of intervals is only closed
under intersection. Regular expressions (regexps) are

equivalent to finite automata (FAs) in expressive power,
and in fact we represent regexps as FAs> since the lat-
ter are easier to compute _4th. For example, deciding
whether two FAs accept the same language can be done

efficiently.
5.2.0.0.8 Concatenation The concatenation of

two strings, a and b, yields another string, c. This con-
sff_-_t is-r@presented a_ 6 = d -9 b. If th@ domains of a
and b are regexps, the domain of c will simply be the
regexps resulting from concatenating the regexps for a
and b. Less obviously, if the domains of a and c are reg-

exps, the domain of b is a regexp. To construct an FA
for b given FAs for a and c, we in effect traverse the FAs
for c and a in parallel. Whenever a transition is allowed

by both c and a, that transition is taken. Whenever an
accept node in a is reached, the corresponding node in
c is marked. A new NFA for b is constructed by copying
the NFA for c and making all the marked nodes start
nodes. A similar procedure can be used to construct an

NFA for a, given NFAs for b and c.
5.2.0.0.9 Containment The relation contains(a,

b) means that string b is a substring of a. If the do-
main of b is a regexp r, then the domain of a is simply
the regexp ".*r.*", where "." means "accept any charac-
ter," so ".*" means "accept any string of zero or more
characters." Less obviously, if the domain of a is a reg-

exp, then so is the domain of b. Given an FA for a, we
can construct an NFA for b by e!iminating any dead-end

nodesfroma (thatis,nodesfromwhichit isimpossible
to reachanacceptnode),andthenmakingallnodesin
a both sta_ and accept nodes.

5.3 Tractable Reasoning

In the previous sections we established that we can en-

force consistency on a variety of constraints, even when
the domains are infinite. We now show how to use these

results to demonstrate that a quantified constraint is
satisfied. In order to do this, we need some additional

definitions. Let C(X) be a CSP. Consider the hyper-
graph Gc, where the vertices of G are the variables of

C and the hyperedges are the constraints. Assume we
have imposed a total order on the variables X. Freuder
(Fie82) defines the width of a variable z as the num-
ber of variables earlier in the ordering that are in the

scope of a constraint on x. The width of an ordering is
the maximum width of a variable, and the width of the
CSP is the minimum width over all orderings.

We restate the following theorem from(Fre82) with-
out proof:

Theorem: Let C be a CSP. If C is strongly k-
consistent and the width of g is < k, then there is
a backtrack-free procedure to find a solution to C.

We can now prove the following:
Corollary: Let C be a CSP and assume C is strongly

k-consistent and the width of C is < k. Let x be the
first variable in a search order inducing a width of _< I¢.
Then d(x) = 7r=(S(C)).

Proof." We will show that each element of d(x) can
be extended to a solution to C. For each c_ E d(x) make
the assignment x = _. Consider the assignment of any
variable y. Now, since the width of C is < k, we know
that when we use a variable ordering that induces a
width _< k, fewer than k variables sharing constraints
with y are assigned before assigning y. Further, since
we also know that C is strongly k-consistent, any con-
s_istent_ _sig_ment of fewer than k va£_iables can always
be extended by one assignment. Thus, we can continue
assigning variables without failure until all variables are
assigned, regardless of the initial assignment to x.

Thus, any @ and • for which k-consistency can be

established and for which the single shared universally
quantified variable x is the first variable in the search

order for both • and • can be handled this way. For in-
finite domains, achieving strong k-consistency requires
the constraint to be similar to one of those described in
sections 5.1 and 5.2.

6 Example

In this example, we illustrate the entire planning pro-
cess, including generating subgoals through regression,
determining entailment through unification and com-
puting entailment for universally constraints with infi-
nite domains.

Suppose we have a grayscale image corresponding to
the elevation over some region:

plot. xSize = XMAX;

plot. ySize = YMAX;
Vx, y : unsigned, el: real.

when(x < XMAX Ay < YMAX A
el =elevation (xP roj (z),yP roj (y)))

plot. value(x, y) =.. hProj(e/)

where xProj and yProj are linear functions mapping the
x, y coordinates of the image to the corresponding lon-
gitude, latitude tl_at they represent, hProj is a linear
function mapping elevation to pixel values in the im-
age, with lower (blacker) values correspond to lower
elevations, and elevation(z, y) is the elevation at lon-

gitude x, latitude y. The notation p!ot.xSize denotes
the horizontal size of the image plot, and p!ot.va[ue(x,
y) means the pixel value at the coordinates z, y in the
image plot.

Say we would like to produce a color image showing
the same elevations, but highlighting particular ranges
of elevation using different colors. For example, pixels
corresponding to points below sea level should be blue
and points above the snow line should be shades of gray.

One way to accomplish this would be by creating
bitmaps Or monochrome images cooresponding to the
the pixels of interest (i.e., pixels above or below a par-
ticular value),' and using these bitmaps to select the

pixels on which particular operations, like coloring the
pixels blue, will be performed. Suppose we have a
threshold command, which takes an image, in, as in-
put and has an argument specifying a threshold value,
and outputs an image, out, the same size as the input,
with a value of 255 for every pixel in the input whose
value is above the threshold and a value of zero for every
pixel below the threshold:

Vz, y: unsigned, v: pixe!Value

when (x < in.xSize && y < in.ySize &&
v = in.value(x, y))

when(v<thresh) out.value(x,y) := 0;
when (v>thresh) out.value(x,y) := 255;

where thresh is an action parameter of type pixelValue
(i.e., a variable from _) denoting the threshold value,
and a pixelValue is an integer in the range [0, 255].
The use of nested whens is merely a shorthand, where
"when (_1) {when (_2) k_}" is equivalent to "when
(_1A_2) k_}." This example is explored in more de-
tail in (?). Here, we focus on a single subgoal that
arises during planning: to generate a threshold map,
sea, based on elevation at sea level:

Vx_; y': unsigned, elev: real.

when(J<XMAX A y_<YMAX A
elev=elevation(xProj(x'),yProj(y')))

when (elev > O) sea:value(x,y) = 255;
when (elev <_ O) sea.value(x,y) = 0;

where words in ALL CAPS are constants. Regressing
this subgoal through the threshold action, we get:

Vx', y' :unsigned, elev: real, 3v':unsigned
when(x'<XMAX && y'<YMAX &&

elev=elevation (xProj (x'),yP roj (y')))

x' < gn.xSize;
y' < in.ySize;

V' : in.value(x, y);
when (elev > 0) v'>thresh;

when (eIev < 0) v'<_thresh;

We try to satisfy this goal using the initial state; specif-

ically, letting the image in be plot.

Vx ;, y':unsigned, elev: real 3v;: unsigned 3e/':real

when(x'<XMAX &_= y;<YMAX &_z
elev=elevation(xProj(x'),yProj(y')))

x' < XMAX;

y' < YMAX;

v'= hProj(e/');
el' =elevation (xProj(x'),yProj (y')));
in =plot;

when (elev > O) v_>thresh;
when (eIev <_ O) v'<thresh;

The subgoal el' =elevation(xProj(x'),yProj(y'))) is triv-
ially satisfied by unification if eF = elev. The subgoals
x' < XMAX and y' < YMAX are also trivially satisfied.
This can be determined easily by quantified constraint
reasoning: The domain of x' established by the LHS

is [0,XMAX-1], and the same domain is established by
the RHS. Removing the satisfied terms, we get:

Vx', y': unsigned, eIev: real _v': unsigned 3e/':real
when(x'<XMAX && y'<YMAX &_:

elev =elevation (x Proj (x') ,yP roj (y')))
v' = hProj(e/');
el'= e/, e'v ;

when (elev > 0) v'>thresh;

when (ele, < 0) el<thresh;

which, simplified to it essence, gives us the following
two quantified constraints.

Vel: real. (el > 0) _(hProj(el)>thresh)
Ve2: real. (e2 _< 0) =>(hProj(e2)<_thresh)

R%%_11that hProj is an increksihg liff&ar fiihctien. As-

sume hProj(e)=O.O5e + 42. Note that although the do-
main of hProj is unbounded, the range is [0,255], so all
values of e below -840 map to 0, and all values above

4260 map to 255. Since we map real values onto inte-
gers, we will always round up.

These constraints share the parameter thresh, which

needs to be assigned a value. As discussed above, there
are a number of possible variable ordering strategies

we could employ, the default being to choose a value
for thresh and then see if the quantified constraints are

satisfied. Say we pick the value 43. Let's tackle the
constraint on el first. Enforcing the LHS constraint
sets the domain of el-to the interval (0,oo). On the

RHS, propagating the value of thresh, sets the domain of
hProj(el) to [44, 255]. The domain of el then becomes
(20, oo). Since the domain of el is not the same as it
was according to the LHS, the constraint is violated, so
43 is not a valid assignment to thresh.

Now say we pick 42. Once again, the domain of el
is(0,oe) . This time, propagating thresh in the RHS

makes the domain of hProj(el) [43,255], resulting in a

domain for el of (0, oo), which is consistent with the
LHS, so we proceed to the other forall constraint. En-

forcing the LHS sets the domain of e2 to the interval
(-co, 0]. Propagating the value of thresh in the RHS
sets the domain of hProj(e2) to [0, 42], resulting in a
domain of (-oo, 0] for e_.. Both forall constraints are
consistent.

An alternative to branching on values of thresh would
be to leave it unassigned and see if we can narrow down

the choices through propagation. Working on the con-
straint on el first, we enforce the LHS constraint, set-

ting the domain of ez to the interval (0, oo). Propa-
gating the value of el, the domain of hProj(e_) is then
[43,255] and the domain of thresh is [42,255]. Since en-
forcing the RHS constraints did not shrink the domain
of e_, the first implication is valid so far: Enforcing
the LHS of the second constraint sets the domain of

e2 to the interval (-oo, 0]. Enforcing the RHS sets the
domain of hProj(e2) to [0,42] and restricts the domain
of thresh to the singleton 42. The domain of e2 did

not shrink, and the reduction of the domain of thresh
did not shrink the domain of el, so both implications

hold, and the only valid parameter choice is 42, which
is hProj(0), the pixel value cooresponding to sea level.

7" Previous Work

The Amphion system (SWL+94) was designed to con-
struct programs consisting of calls to elements of a soft-
ware library. Amphion was supported by a first-order
theorem prover. The task of assembling a sequence of

image processing commands is similar to the task Am-
phion was designed to solve. However, the underlying
representation we present here is a subset of first-order

logic, enabling the use of less powerful reasoning sys-
tems.

Oinsberg and Parkes (GP00) point out that the satis-
fiability encoding of many STRIPS planning problems
_i_Es gr@&tihg multi!hie g_'b_ifid_d ihst_nces for ax-
ioms of the form Vzyz.(a(x, y) A b(y, z) _ c(z, z), then

performing search over the truth values for all of the
grounded instances. They propose a formulation in
which a(x, y)), b(y, z) and c(z, z) are constraints on vari-
ables x, y, z and use this formulation to either search for

units or find good variables to flip in local search. This
is a different restriction on first-order logic from that

we use, and furthermore, the domains of z, y, z are im-
plicitly assumed to be finite.

Other planners, including(GEW94; ?; ?) also sup-

port universal quantification. The universally quan-
tified statements in PSIPLAN (BS00) can include in-

equality constraints, Which are used to exclude individ-
uals from the universe of discourse. However, no prior

planning systems support the ability to determine the
validity of universally quantified constraints that we dis-
cuss here.

L'Homme CL'H93) and Marriott and Stuckey (MS98)
both describe methods of preserving an interval repre-
sentation of variables involved in arithmetic constraints

whileeliminatinginfeasiblevalues.However,theyex-
plicitlyassumethattheintervalrepresentationisanun-
soundapproximationto thedomainof feasiblevalues.
BenhamouandGouMard(BG00)describeamethodof
soundbut incompleteapproxLmatepropagationof in-
finitedomains.Sincewerequirebothsoundnessand
completenessin caseswherethat setmaybeinfinite,
wehavemadestrongerrestrictionsonthetypesofrea-
soningperformed.

8 Conclusions and Future Work
Wehavedescribedaplanningmethodologyforsoftbots
that supportsuniversalquantification,incompletein-
formation,andconstraintsonvariableswithverylarge
or infinite domains. We restrict the form of both goals
and effects, while preserving the ability to express con-
ditional effects and reason about incomplete informa-
tion. Our approach uses a combination of unification
and constraint reasoning to demonstrate entailment.

We described an algorithm for proving or disproving
entailment for constraints over finite domains, and iden-
tified a subclass of constraints for which the same al-
gorithm can prove or disprove entailment for variables
with infinite domains. This class of constraints has

proven useful in the domains of planning for image pro-
cessing and managing file archives.

When describing the algorithm to validate quanti-
fied constraints, we assumed that all parameters of the
actions were assigned before validation occurs. As de-
scribed in Section 6, there are times when it is worth

deferring the decision about parameters to actions, be-

cause propagation will limit the possibilities. Exploit-
ing these possibilities is the subject of future work.

We can potentially weaken the conditions on quanti-
fied constraints required to reason about variables with
infinite domains. The condition that _ and _ share

only one variable can be relaxed when there is a proce-
dure for checking the validity of the constraint without
cl=i_-dkiii_ ihfifi]tely many values. One 6a_e is #¢heii all

of the constraints describe linear equations or inequal-
ities. In addition, it may be possible to generalize the
conditions under which consistency enforcement allows

us to conclude that all the values of a variable partici-
pate in solutions to a CSP. Finally, we can try to find
more constraints on which we can enforce consistency
when domains are infinite.

We currently assume that it is necessary to maintain
both soundness and completeness while reasoning about
constraints. In the case of large finite domains, this rea-
soning is slow, but for infinite domains outside the lim-
ited cases we discussed the reasoning may become im-
possible. Introducing unsoundness into the constraint

reasoning is unlikeley to be effective; since the quan-
tiffed constraint must be satisfied, all elements of the
universe satisfying the LHS and RHS must be identified

eventually, and unsoundness only postpones this prob-
lem. Benhamou and Goualard (BG00) introduce sound
but incomplete reasoning in order to maintain tractable

representations of infininte domains. However, it may

be worthwhile to consider the effects of sound but in-

complete reasoning on the planning process.

References

F. Benhamou and F. Goualard. Universally quantified
interval constraints. In Proceedings of the 6th Interna-

tional Conference on the Principles and Practices of
Constraint Programming, pages 67-82, 2000.

T. Babaian and J. Schmolze. Psiplan: Open world
planning with e-forms. In Proceedings of the 5th
Conference on Artificial Intelligence Planning and
Scheduling, 2000.

t

S. Chien, F. Fisher, E. Lo, H. Mortensen, and R. Gree-

ley. Using artificial intelligence planning to automate
science data analysis for large image database. In Proc.

1997 Conference on Knowledge Discovery and Data
Mining, August 1997.

O. Etzioni, K. Golden, and D. Weld. Sound and effi-

cient closed-world reasoning for planning. J. Artificial
Intelligence, 89(1-2):113-148, January 1997.

O. Etzioni and D. Weld. A softbot-based interface to
the Internet. C. ACM, 37(7):72-6, 1994.

E. Freuder. A sufficient condition for backtrack-free

search. Journal o/the Association for Computing Ma-
chinery, 29(1):24-32, January 1982.

Keith Gotden, Oren Etzioni, and Dan Weld. Om-

nipotence without omniscience: Sensor management
in planning. In Proc. 12th Nat. Conf. AI, pages 1048-
1054, 1994.

Keith Golden. Leap before you look: Information

gathering in the PUCCINI planner. In Proc. gth Intl.
Conf. AI Planning Systems, 1998.

M. Ginsberg and A. Parkes. Satisfiability algorithms
and finite quantification. In Proceedings of the 7th
Conference on Knowledge Representation, 2000.

0_. L'Homme. Consistency techniqu_es for numeric
csps. In Proceedings of the 13th International Con-
ference on Artificial Intelligence, 1993.

K. Marriott and P. Stuckey. Programming with Con-
straints: An Introduction. The MIT Press, 1998.

E. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc.

1st Int. Conf. Principles o/Knowledge Representation
and Reasoning, pages 324-332, 1989.

J.S. Penberthy and D. Weld. UCPOP: A sound,
complete, partial order planner for ADL. In

Proc: 3rd Int. Conf. Principles of Knowledge Rep-
resentation and Reasoning, pages 103-114, October
1992. See also http://_ww.cs.washington.edu/
research/proj ect s/ai/m,'w/ucpop, html.

M. Stickel, R. Waldinger, M. Lowry, T. Pressburger,
and I. Underwood. Deductive composition of astro-
nomical software from subroutine libraries. In Proceed-

ings of the 12th Conference on Automated Deduction,
1994.

